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In addition to the preparation of molecular crystals by conven-
tional solution-phase crystallization, there are a number of reports1

of the preparation of molecular cocrystals by grinding together the
“pure” solid phases of the constituent molecules. In many cases,
single-phase cocrystals are obtained following sufficient grinding.
In addition to the obvious advantages associated with solvent-free
procedures for materials preparation, solid-state grinding can
sometimes produce cocrystals of different structure from those
obtained by cocrystallization from solution or from the melt.2 For
example, for the system comprising racemic bis-â-naphthol (BN)
and benzoquinone (BQ), the cocrystals obtained from solution
crystallization and solid-state grinding have different structures and
stoichiometries (rac-BN:BQ ratios of 1:1 and 2:3 respectively).1g,2,3

Clearly, solid-state grinding provides an opportunity to prepare
new materials that may be difficult to obtain (and/or to isolate) by
other routes and could have important implications with regard to
applications based, for example, on chemical reactivity, electronic
properties, and/or coloristic properties of these materials. However,
to develop a fundamental understanding of the properties of such
materials, an essential prerequisite is to know their structural
properties. Intrinsically, materials prepared by the solid-state
grinding procedure are microcrystalline powders, which are not
amenable to structural characterization by single-crystal X-ray
diffraction techniques. Nevertheless, recent years have seen sig-
nificant advances in the opportunities for carrying out complete
structure determination of molecular solids directly from powder
diffraction data,4 particularly through the development of the “direct-
space” strategy for structure solution,5 and it is clear that these
techniques have a significant role to play in the structural
characterization of materials prepared via the solid state grinding
method. In this communication, we demonstrate the successful
application of this approach in the structurally challenging case of
a material containing three molecular components (Scheme 1)-
rac-BN, BQ, and anthracene (AN). This material is part of a wider
family of molecular cocrystals that are of interest with regard to
their coloristic properties.1g,2

Grinding a physical mixture of the pure crystalline phases of
rac-BN, BQ, andAN is found to produce a polycrystalline material
with reddish purple color.6,7 Solution-state1H NMR and elemental
analysis indicate that the stoichiometry of the material is (BQ)1-
(BN)1(AN)0.5. Crystallization from solution, on the other hand, gives
a different cocrystal, with a different powder diffraction pattern
(and hence different structure) and different color (bluish black).8

Powder X-ray diffraction9 indicates that the solid-state grinding
of rac-BN, BQ, andAN produces a new material, with no detectable

amounts of the pure phases of the individual components.6 The
peaks in the powder diffraction pattern are comparatively broad (a
consequence of the lengthy grinding procedure), which can hinder
the unequivocal determination of the unit cell parameters and space
group, and standard indexing methods led to a number of unit cells
with comparable figures of merit. In this situation, solid-state13C
NMR played an important role in assisting the determination of
the unit cell and space group. In the high-resolution solid-state13C
NMR spectrum, the number of isotropic13C resonances corresponds
to the number of carbon atoms in the formula unit (BQ)1(BN)1-
(AN)0.5. From this knowledge, and assuming a standard crystal
density for organic materials, the volume (V) of the unit cell per
formula unit (Z) was estimated to beV/Z ≈ 620 Å3. From the
combined evidence, a monoclinic unit cell (a ) 27.12 Å,b ) 10.05
Å, c ) 20.32 Å,â ) 117.3°) with V ) 4921 Å3 (and henceZ )
8) obtained from indexing the powder diffraction pattern using the
ITO program10 was considered to be the most likely unit cell, and
was indeed the unit cell with the highest figure-of-merit among
the indexing solutions. Using this unit cell and systematic absences
for space groupC2/c (for whichZ ) 8), a high-quality profile fitting
of the complete powder diffraction pattern (using the LeBail
method;Rwp ) 0.0208) was obtained.

Structure determination from the powder X-ray diffraction data
was carried out using the genetic algorithm (GA) technique11 for
structure solution (implemented in the program EAGER12), followed
by Rietveld refinement (using the GSAS program13). In space group
C2/c, the half molecule ofAN in the asymmetric unit can reside
either at a center of inversion or on a two-fold rotation axis, and
separate structure solution calculations14 were carried out in each
case. The calculation withAN residing on the two-fold axis yielded
the trial structure with lowestR-factor (Rwp ) 0.0649) among all
calculations carried out, and this structure was used as the starting
model for Rietveld refinement, in which standard restraints on bond
lengths and angles were used. We note that no specific restraints
were imposed in “joining up” the two halves of theAN molecule
across the two-fold axis, and despite this fact, a realistic geometry
is maintained for theAN molecule. The good agreement between
calculated and experimental powder diffraction patterns in the final
Rietveld refinement15 (Figure 1) vindicates the correctness of the
structure.

The crystal structure (Figure 2) is rationalized in terms of three
different interaction motifs. First, there are edge-to-face interactions
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betweenBQ (edge) andAN (face) molecules, involving a pair of
BQ molecules sandwiched between two parallelAN molecules,
with the planes of theBQ molecules perpendicular to the planes
of theAN molecules (which lie parallel to theac-plane). The two
AN molecules within a given sandwich are related by a unit cell
translation along theb-axis, and this motif extends as an infinite
ladder-type structure‚‚‚AN‚‚‚(BQ)2‚‚‚AN‚‚‚(BQ)2‚‚‚ along the
b-axis. Second, eachBQ molecule in the pair discussed above
engages in face-to-face interactions with a neighboringBN
molecule, giving rise to aπ-stacking arrangement involving four
molecules (BN‚‚‚BQ‚‚‚BQ‚‚‚BN) along the direction of thea-axis.
A two-fold rotation axis runs perpendicular to the stacking direction
and passes through the midpoint of theBQ‚‚‚BQ interaction. Third,
O-H‚‚‚O hydrogen bonding involvingBN andBQ molecules gives
rise to chains that undulate along the direction of thec-axis. These
chains involve alternatingBN andBQ molecules; each CdO group
of the BQ molecule acts as a hydrogen bond acceptor, and each
OH group of theBN molecule acts as a hydrogen bond donor. For
a givenBN molecule, both rings are involved in hydrogen-bonding
interactions, but only one ring is involved in theπ-stacking with
BQ molecules. Knowledge of the structural properties of this
material provides a direct opportunity to understand its physical
properties, most importantly its coloristic properties. Such work is
now in progress.

The solid-state grinding procedure described in this report
provides a route for the preparation of new materials that cannot
be obtained from solution-state crystallization techniques. Such
solvent-free processes for materials preparation have clear implica-
tions, inter alia, with regard to “green chemistry”. Hitherto,
structural characterization of materials prepared in this way has

been limited by the fact that the preparation procedure intrinsically
leads to polycrystalline powders. However, as demonstrated here
for the first time, new developments in techniques for determining
the structures of solids directly from powder diffraction data have
a key role to play in the structural characterization of new phases
produced from solid-state grinding procedures, even when the peaks
in the powder diffraction pattern are comparatively broad.
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Figure 1. Experimental (+ marks), calculated (solid line), and difference
(lower line) powder X-ray diffraction profiles for the three-component
material after final Rietveld refinement.

Figure 2. Crystal structure of the three-component material (BN: red;
BQ: green;AN: yellow). Dotted lines indicate theπ-stacking interactions
and hydrogen-bonded chains.
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